EFEITO FOTOELÉTRICO
O efeito fotoelétrico é a emissão de elétrons por um material, geralmente metálico, quando exposto a uma radiação eletromagnética (como a luz) de frequência suficientemente alta, que depende do material, como por exemplo a radiação ultravioleta. Ele pode ser observado quando a luz incide numa placa de metal, arrancando elétrons da placa. Os elétrons ejetados são denominados fotoelétrons.
Representação esquemática do efeito fotoelétrico
Observado pela primeira vez por A. E. Becquerel em 1839 e confirmado por Heinrich Hertz em 1887,[2] o fenômeno é também conhecido por “efeito Hertz”,[3][4] não sendo porém este termo de uso comum, mas descrito pela primeira vez por Albert Einstein, o efeito fotoelétrico explica como a luz de alta frequência libera elétrons de um material.[5]
De acordo com a teoria eletromagnética clássica, o efeito fotoelétrico poderia ser atribuído à transferência de energia da luz para um elétron. Nessa perspectiva, uma alteração na intensidade da luz induziria mudanças na energia cinética dos elétrons emitidos do metal. Além disso, de acordo com essa teoria, seria esperado que uma luz suficientemente fraca mostrasse um intervalo de tempo entre o brilho inicial de sua luz e a emissão subsequente de um elétron. No entanto, os resultados experimentais não se correlacionaram com nenhuma das duas previsões feitas pela teoria clássica.
Em vez disso, os elétrons são desalojados apenas pelo impacto dos fótons quando esses fótons atingem ou excedem uma frequência limite (energia). Abaixo desse limite, nenhum elétron é emitido do material, independentemente da intensidade da luz ou do tempo de exposição à luz (raramente, um elétron irá escapar absorvendo dois ou mais quanta; no entanto, isso é extremamente raro porque ao absorver quanta suficiente para escapar, o elétron provavelmente terá emitido o resto dos quanta absorvidos). Para dar sentido ao fato de que a luz pode ejetar elétrons mesmo que sua intensidade seja baixa, Albert Einstein propôs que um feixe de luz não é uma onda que se propaga através do espaço, mas uma coleção de pacotes de ondas discretas (fótons), cada um com energia. Isso esclareceu a descoberta anterior de Max Planck da relação de Planck (E = hν), ligando energia (E) e frequência (ν) como decorrentes da quantização de energia. O fator h é conhecido como a constante de Planck.
Em 1921 o alemão Albert Einstein recebeu o prêmio Nobel de Física por “suas contribuições para a física teórica e, especialmente, por sua descoberta da lei do efeito fotoelétrico.
Em 1887, Heinrich Hertz usou um circuito em conjunto com um centelhador. Ele observou que quando a luz incidia no centelhador do receptor era facilitada a produção de centelhas.
Em 1900, Philipp von Lenard fez um experimento com raios catódicos, no qual no catodo faz-se incidir luz ultravioleta. Um potenciostato controlava a diferença de potencial entre o catodo e o anodo, medindo a corrente do sistema[10]. Com esse experimento, Lenard observou que a corrente máxima era proporcional a intensidade da luz o que era esperado, no entanto, não havia uma intensidade mínima para que a corrente fosse nula gerando conflito com a teoria clássica
Mais tarde, quando Einstein propôs que a luz se comportava de maneira localizada no espaço e possuía energia h
{\displaystyle \nu } (fóton), os experimentos anteriores foram justificados e comprovaram a teoria quântica. No experimento de Lenard, por exemplo, a intensidade da luz diretamente proporcional a corrente gerada, é justificado pelo fato de que uma luz de maior intensidade significa maior quantidade de fótons e mais elétrons sendo ejetados da superfície do metal, o que consequentemente significa mais elétrons em movimento e por isso a corrente observada era maior.
APLICAÇÕES
Graças ao efeito fotoelétrico tornou-se possível o cinema falado , assim como a transmissão de imagens animadas (televisão). O emprego de aparelhos fotoelétricos permitiu construir maquinaria capaz de produzir peças sem intervenção alguma do homem.
Nas células fotoelétricas (fotocélulas), a energia luminosa se transforma em corrente elétrica. Diversos objetos e sistemas utilizam o efeito fotoelétrico, por exemplo: as televisões (de LCD e plasma) as reconstituições de sons nas películas de um cinematógrafo.
Referências
Wikipédia
Física Universitária
Deixe um comentário